

HBI® Hybrid PV Inverter

Installation & Operation Manual

Table of Contents

Safety Precautions	4
Contact Information	5
Warranty Information	6
Hybrid PV System	7
Principles of Operation	8
Functions	8
On-grid Power Manager	8
Off-grid Power Supply	8
Charge/Discharge Controller	8
UPS	8
Working with Grid	8
Off- grid mode	8
On-grid mode- Net Metering	9
On-grid mode- Self Using	.10
Compensating Loads from Batteries	.11
Power Priority	.12
To Loads	.12
To Battery (Charging)	. 12
Operation without Battery	.12
Product Overview	13
Outline & Dimensions	.13
Installation	14
Inside the Package	.14
Choosing Proper Location	.15
Keeping Clearance	.15
Mounting Procedure	.16
Wire Connections	.17
Typical System Diagram	.17
Power Connectors	.17
Connecting AC Mains	.18
Connecting AC Loads	. 19
Connecting PV	. 19
Disconnect PV	. 19
Connecting External CT (Optional)	.19
Single inverter	.19
Single unit- split phase	.20
Multiple Units- Single phase	.22
Connecting Battery Bank(s)	.22
Preparing Wires and Connectors for Battery	.23

Connecting Batteries	23
Connecting RS485	25
Connection	25
Setting Address	26
Wire Connections- Multiple Units	26
Connecting CANbus cable	28
Setting the switch for CANbus	28
Ready to Start	30
Check List	30
Start-up Procedure	31
Operation	. 32
Display and Keys	32
Display	32
Operation keys	32
Operation Chart	32
Settings	33
Initial Settings	33
System Connection	34
Set Clock	35
Buzzer Configuration	35
Battery Configuration	35
Duttery configuration	
Frequency Configuration	36
Frequency Configuration Mains Charging Battery	36 36
Frequency Configuration Mains Charging Battery Set RS485 Address	36 36 36
Frequency Configuration Mains Charging Battery Set RS485 Address Normal Settings	36 36 36 37
Frequency Configuration Mains Charging Battery Set RS485 Address Normal Settings Factory Setting	36 36 36 37 38
Frequency Configuration Mains Charging Battery Set RS485 Address Normal Settings Factory Setting Manual ON/OFF	36 36 37 38 38
Frequency Configuration Mains Charging Battery Set RS485 Address Normal Settings Factory Setting Manual ON/OFF	36 36 37 38 38 38
Frequency Configuration Mains Charging Battery Set RS485 Address Normal Settings Factory Setting Manual ON/OFF. LCD Frames Chart of Frames	36 36 37 38 38 39 39
Frequency Configuration Mains Charging Battery Set RS485 Address Normal Settings Factory Setting Manual ON/OFF LCD Frames Chart of Frames Home Frame	36 36 37 38 38 39 39 39
Frequency Configuration Mains Charging Battery Set RS485 Address Normal Settings Factory Setting Manual ON/OFF LCD Frames Chart of Frames Home Frame Power Frame 1	36 36 37 38 38 39 39 39 39 40
Frequency Configuration Mains Charging Battery Set RS485 Address Normal Settings Factory Setting Manual ON/OFF LCD Frames Chart of Frames Home Frame 1 Power Frame 2	36 36 37 38 38 39 39 39 39 40 40
Frequency Configuration Mains Charging Battery Set RS485 Address Normal Settings Factory Setting Manual ON/OFF LCD Frames Chart of Frames Home Frame Power Frame 1 Power Frame 2 Battery Frame	36 36 37 38 38 39 39 39 40 40 40
Frequency Configuration Mains Charging Battery Set RS485 Address Normal Settings Factory Setting Manual ON/OFF LCD Frames Chart of Frames Home Frame Power Frame 1 Power Frame 2 Battery Frame Setting Frame	36 36 37 38 38 39 39 39 39 40 40 40 41
Frequency Configuration Mains Charging Battery Set RS485 Address. Normal Settings Factory Setting Manual ON/OFF. LCD Frames Chart of Frames Home Frame Power Frame 1 Power Frame 2 Battery Frame Setting Frame Error Frame	36 36 37 38 38 39 39 39 40 40 40 41 41
Frequency Configuration Mains Charging Battery Set RS485 Address. Normal Settings Factory Setting Manual ON/OFF. LCD Frames. Chart of Frames. Home Frame. Power Frame 1 Power Frame 2 Battery Frame. Setting Frame. Version Frame	36 36 37 38 38 39 39 39 39 40 40 40 41 41 42
Frequency Configuration Mains Charging Battery Set RS485 Address Normal Settings Factory Setting Manual ON/OFF LCD Frames Chart of Frames Home Frame Power Frame 1 Power Frame 2 Battery Frame Setting Frame Version Frame Monitoring Frame	36 36 37 38 38 39 39 39 40 40 40 41 41 42 42
Frequency Configuration Mains Charging Battery Set RS485 Address Normal Settings Factory Setting Manual ON/OFF LCD Frames Chart of Frames Home Frame Power Frame 1 Power Frame 2 Battery Frame Setting Frame Version Frame Monitoring Frame Role Frame	36 36 37 38 38 39 39 39 39 39 40 40 40 41 41 42 42 42 42
Frequency Configuration Mains Charging Battery Set RS485 Address Normal Settings Factory Setting Manual ON/OFF LCD Frames Chart of Frames Home Frame Power Frame 1 Power Frame 2 Battery Frame Setting Frame Version Frame Monitoring Frame Role Frame Event Frame	36 36 37 38 38 39 39 39 39 40 40 40 41 41 42 42 42 42 42
Frequency Configuration Mains Charging Battery Set RS485 Address Normal Settings Factory Setting Manual ON/OFF LCD Frames Chart of Frames Home Frame Power Frame 1 Power Frame 2 Battery Frame Setting Frame Version Frame Monitoring Frame Role Frame Monitoring HBI	36 36 37 38 38 39 39 39 39 39 40 40 40 41 41 42 42 42 42 43
Frequency Configuration Mains Charging Battery Set RS485 Address. Normal Settings Factory Setting Manual ON/OFF. LCD Frames. Chart of Frames. Home Frame. Power Frame 1 Power Frame 2 Battery Frame Setting Frame. Error Frame Version Frame Monitoring Frame. Role Frame. Monitoring HBI Using USB	36 36 37 38 38 39 39 39 39 39 40 40 40 41 42 42 42 42 42 43 43

Firmware Upgrade	
Capacity of Memory	
Trouble Shooting	45
General Fault	45
Multi-unit Fault	47
Maintenance	49
Regular maintenance	49
Cleaning Dust	49
Replacing AC Fuse	49
Appendix	50
Specifications	50
Battery Charging/Discharging	53
Charging Method	53
Charging/Discharging Parameters	53

Safety Precautions

Refer to the Operating Manual

There are information of caution, operation and installation, please read and keep this manual.

Caution: Risk of Electric Shock

Alternating Current (AC) and Direct Current (DC) sources are connected to this device. To prevent risk of electric shock during maintenance or installation, please ensure that all AC and DC connections are disconnected.

Caution: Risk of Electr ic Shock

Energy is stored inside the device and components, even when converter is not operating. Wait for 10 minutes before opening it.

Electric Shock on all Battery circuits

Danger voltage exists on all conductive wires and terminals of battery circuit. Please protect and prevent touching of them.

PV modules ONLY

PV (Solar Input) is designed for PV and solar power conversion only; do not use it for other DC sources and purpose.

Caution: Risk of Danger

If the Product is used in a manner that is not covered by the scope of warranty, the protection provided by the product may be impaired.

Safety Precautions

Caution

Must be installed by a competent person

Caution

Do not stay permanently at a distance of less than 30 cm to this converter. Device generates electromagnetic radiation could be harmful in such a close range.

Do not Connect Generator in On-grid Mode

In this mode, HBI inject power into AC mains, only grid can be connected to AC mains. If a generator is connected, the injection may cause damage of generator

Caution: Hot Surface

Some metallic parts of enclosure may be hot during operation.

Recycle

Do not throw this electronic device into the trash when discarding. To minimize pollution to environment, please handle according to local regulations.

Contact Information

TEL : +886 2 25959780 FAX: +886 2 25959412 3F., No.288, Sec. 2, Zhonghua Rd., Xinzhuang Dist., New Taipei City 242, Taiwan R.O.C. service@jdauspice.com www.jdauspice.com

Warranty Information

Warranty or liability will be void if damage caused by any, but not limited to the followings:

- 1. Unauthorized opening of the unit
- 2. Installation faults such as improper environment, wiring and application
- 3. Working conditions beyond the unit specifications
- 4. Improper operation of the unit
- 5. Violation of safety instructions inside this manual
- 6. Damage during transportation
- 7. Any internal modification
- 8. Replacing or installation of unauthorized software
- 9. Unforeseen calamity or force majeure

HBI[®] Hybrid PV System

Glossary

- 1. HBI[®] Hybrid PV Inverter (HBI[®]): Manager of PV inputs, charging, discharging and load supplying functions
- 2. PV panels: Receive sunlight and convert it into electricity
- 3. Battery Bank: Stores energy from mains and PV inputs
- 4. Protected Loads: Appliances & devices take AC power from HBI[®], especially in blackout
- 5. Unprotected Loads: Loads supplied by grid or generator (mains) directly. In case no AC from grid or generator, unprotected loads are not powered any more. Usually, loads larger than HBI[®] rating power should be connected here
- 6. Grid: Public AC utility
- 7. Ext. CT: Sensor for detecting power from utility
- 8. EssLog[®]: The data gateway for transmitting inverter data to Cloud server

Principles of Operation

Functions

The HBI[®] PV inverter is an intelligent and automatic power manager of a PV storage system, it is

On-grid Power Manager

In places with grid (utility), HBI[®] can manage the power from PV, grid and battery. For protected loads connected to HBI[®], during blackout, HBI[®] can supply power to them from PV and/or batteries.

Off-grid Power Supply

In places without grid, protected loads will be powered by the HBI[®]. The power may come from PV panels and/or batteries. In case a generator is connected, whenever power from PV and batteries are not enough, HBI[®] switches loads to generator directly.

Charge/Discharge Controller

While there is surplus PV power, HBI[®] will direct it to battery; while PV power is not enough, HBI[®] will supply loads from batteries.

In case you have enabled charging battery from mains, HBI[®] will charge battery from mains whenever there is no PV power.

UPS

In case AC main is absent, inverter can supply "protected loads" from PV and/or batteries.

Use on-line UPS for very critical load

The time of recover power after blackout is 4mS. It is short enough for most of equipment's. For very critical devices, please use a on-line UPS between inverter and devices.

Working with Grid

There are varieties of connections to work with grid; the differences are the connections of inverter output and loads.

Off- grid mode

The loads get power EITHER from Mains (Grid or Generator) or inverter output. Normally, HBI[®] provides power to loads, in abnormal conditions such as failure, overload or fully discharging; the loads will be switched to Mains directly.

This application is suitable for

- 1. No utility
- 2. With utility, but user DO NOT want to use utility or use utility as a backup source

In this mode, inverter output is physically separated from grid; there will be no way to feed power to grid.

On-grid mode- Net Metering

Inverter is physically connected to grid (Mains). The power to loads is managed to be:

1. From HBI[®] only: In case the power from solar is enough, HBI[®] converts PV power to loads. In addition, surplus PV power is fed to grid

2. From both HBI[®] and grid: While the power from PV is not enough, HBI[®] and grid share the power to loads

This application is suitable for Surplus PV power is allowed to feed to grid. On-grid mode- Self Using

In some applications, surplus power feeding is not encouraged or allowed; PV power is used by their own. This is "Self Using". The operation principles are the same as "Net Metering" except that surplus power is not fed to outside inverter or external CT.

1. No external CT: The surplus PV will not flow outside the inverter AC mains

2. With external CT: The surplus PV will not flow outside external CT

This application is suitable for PV power can be fed to grid but not paid.

Do not Connect Generator in On-grid Mode

In this mode, HBI inject power into AC mains, only grid can be connected to AC mains. If a generator is connected, the injection may cause damage of generator

Compensating Loads from Batteries

This HBI[®] can use energy in batteries to compensate power from mains. This will minimize the power demand from your grid supplier. Once enabled, there are 2 ways:

1. No external CT: Inverter will take battery power to compensate the power demands of "Protected Loads" or devices connected to "AC Loads".

2. With external CT: Inverter will take battery power to compensate the power demand of loads inside the power network

To do this, please enable the "BAT-> Load" function is settings menu.

BAT For some areas, it is not allowed to feed battery power to/with grid. Please understand your local \ regulation before enable this function.

Power Priority¹

To Loads

The power supplied to loads from different sources follows the priorities. In off-grid mode, it is

```
PV -> Battery -> Mains (AC)
```

In on-grid mode, it is

PV -> Mains (AC) -> Battery

If Battery -> Load function is enabled, it is

PV -> Battery -> Mains (AC)

To Battery (Charging)

The power charged to batteries from different sources follows the priorities:

Operation without Battery

HBI[®] can also work without battery due to our special design. HPI can still provide power to protected loads even in blackouts, from PV panels. However, there are some points you need to know:

- 1. The power to is not stable due to unstable PV
- 2. HBI[®] can not store surplus PV to battery
- 3. HBI[®] can not compensate load power

Devices may be damaged

For some devices, unstable power may damage them. We can not guarantee the operations of your devices.

¹ Some customized models may apply different priority, contact your installer to get more information.

Product Overview Outline & Dimensions

Installation

Inside the Package

Item	Description	
A	Inverter	
В	Mounting bracket & screws	
С	User manual	
D	Plastic anchor & screws x 5,used to fix bracket on wall	
E	RS485 connector/plug & CANbus connection cable	
F	Spared AC Fuse x 1 (30A/250V)	
G	Bead for RS485 cable	
Н	Template for mounting	

Choosing Proper Location

Do not expose the HBI[®] to sunlight, rain or water.

Install HBI[®] at visible level so you can see its status. Fix HBI[®] on a solid, surface.

Mounting surface	
Concrete	ОК
Metal	ОК
Stone	ОК
Wood	Not
	Recommended

Keeping Clearance

Reserve at least 50 cm distance between HBI[®].

Keep distance for the airflow to dissipate heat.

Mounting Procedure

- 1. Marking drill holes by bracket and template
- 2. Fix the bracket on inverter, attach and fix inverter on wall
- 3. Take the wiring cover off and fix the inverter by screws

Wire Connections Typical System Diagram

Maintenance Switch

We suggested installing this switch to power the protected equipment in case of replacing inverter

Power Connectors

- 1. Battery Cables (Positive & negative)
- 2. PV input
- 3. AC Load output
- 4. AC Mains input

Connecting AC Mains

1. Open side cover for wiring

2. Select L and N wires as right figure and table2 below:

Cross Section	Maximum Length for 1% Loss (Meter)	
(mm ²)	HBI-3000-E-xx*	HBI-5000-E-xx*
2.5	11	7
4	18	11
6	26	16

- 3. Insert wires through bottom plate
- 4. Crimp the wires with y-terminals
- 5. Insert wires with terminals, fix them according to polarity and torque on terminals as figure
- 6. Fix wires with cable ties

Protected Earth (PE) Conductor Requirement

The cross section of the conductor shall not be less than 4mm².

Torque Information

The torque for AC terminal is 0.6~0.8 Nm (Newton-meter).

²The table is based on 20°C environment, installer need to adjust according to application and local regulation

Connecting AC Loads

- 1. Prepare similar wires as AC mains
- 2. Repeat steps as AC mains connection
- 3. Fix them on AC Loads terminals

Connecting PV

- 1. If there is DC switch on HBI[®], Switch off it in advance
- 2. Use following connectors for PV DC cables
 - Wieland PST40i1 (Preferred)
 - Multi-Contact MC4
- 3. Prepare wires according table below³

Cross Section	Maximum Length for 1% Loss (Meter)	
(mm ²)	HBI-3000-E-xx*	HBI-5000-E-xx*
2.5	24	6
4	39	10
6	54	23

4. Plug connectors to HBI®

Disconnect PV

To disconnect PV cables, please

- 1. Turn off DC switch if available in advance
- 2. Push in the inter-locker on PV connectors
- 3. Pull off the connectors & cables

Connecting External CT (Optional)

External CT is used to detect power of a circuit. Inverter uses this data to decide the power flow in different modes. Connecting the CT on inverter as right figure. Pay attention on the polarity K and L. They must be correct.

Single inverter

³The table is based on 20°C environment, installer need to adjust according to application and local regulation

Single unit- split phase

Using a external TX to convert single-phase output to split phase output.

Multiple Units- Single phase

Connecting Battery Bank(s)

The voltage of battery bank is 48VDC. The recommended numbers of battery packs are 1~5. Please refer to specification for recommended battery type. There will be some other batteries can be used, please contact your local dealer and service for latest information.

Use Official Battery

Official batteries are designed for HBI[®] considering safety, life and performance. Using other batteries may cause danger and/or poor performance.

SWITCH off all DC and AC sources

Before connecting battery wires, please switch off DC from batteries, PV and all AC in advance.

Preparing Wires and Connectors for Battery

- Select wires of cross-section > 50mm2. RED color is for positive (+) wire and black for negative (-)
- 2. Prepare a breaker/switch of 100A/125VDC
- 3. Prepare cover or sleeve for battery terminals

Connecting Batteries

To connect battery, please follow the steps below.

- 1. Pay attention and follow the instruction of warning label on the unit
- 2. Prepare wires of AWG 4 (or 50mm2)
- 3. Crimp (+) and (-) wires with ring terminals
- 4. Watch out the polarities
- 5. Fix wires on both sides of DC breaker/switch
- 6. Protect and hide all the cables in conduits
- 7. Use battery terminal covers on all battery wires
- 8. Fix the wires on battery terminals as figures below
- 9. Make sure all terminals on batteries are
- protected, not touchable by any person

Watch out polarities

Reverse connections of positive (+) and negative (-) will damage the unit. Incorrect wiring is not covered by warranty.

Way to Correct improper battery polarities

If the battery polarity is reverse, switching on the battery breaker will cause internal fuse broken. Please ask your technical engineer to replace the fuse.

Recommendation for multiple battery banks

If you are using multiple battery banks, we suggest being less than 3 banks in parallel. This will ensure better balance of different banks.

Tightly connect all DC cables and contacts

Make sure all the connections are well contacted. Any loosen may cause fire and damage.

Connecting RS485

To monitor and control inverter by external devices such as computer, you need to connect them by RS485. A typical RS485 connection diagram is shown below.

Connecting to device or computer with RS485 interface

There are some points highlighted.

- 1. All wires between devices and computer shall be twisted
- 2. Maximum allowable wire length is 1000 meters
- 3. The terminal-end device may need a terminal resistor
- 4. Due to multiple connections, each individual device should be assigned an address so as to recognize by computer or device

Connection

The RS485 port is located beneath the inverter as below:

For single unit, please

- 1. Prepare a 2-wire, twisted cable
- 2. Insert and wound the cable on the bead in accessory as right drawing
- 3. Fix cable wires on plug (accessary E). Take care of the polarity
- 4. Push the plug to RS485 port
- 5. Connect another end of cable to monitor device

For multiple connections, please connect them as figure below.

The DIP switch (1) is the terminal resistor switch of the RS485. The default position of this switch is "off". However, if the communication does not work well, please try to switch it to "on" to improve.

Setting Address

For multiple connections, you need to assign each unit with different address. To set the address, please refer to section of "

Caution for Multiple-unit Operations

It is very important to confirm above settings for each unit are the same. Mismatch settings could cause improper o perations.

Set RS485 Address".

Wire Connections- Multiple Units

To build a bigger system with multiple units, you can build the system according to below figure.

The wire connections on AC side are indicated as below:

Caution for Multiple-unit Operations

It is very important to confirm above settings for each unit are the same. Mismatch settings could cause improper operations.

Wire lengths to bus should be equal

To make sure the current balance, the wire lengths to bus of each inverters should be as equal as possible.

Use Common Battery Bank

For multiple units' connection, all inverters should use the same battery bank.

Connecting CANbus cable

- 1. Use the CANbus cable in accessory as right figure
- 2. Plug each cable into CAN socket
- 3. Connect the cable to other cables of inverters

Setting the switch for CANbus

The CANbus switch is located the right side of RS485 switch, labeled as "2". This DIP switch is used to match the impedance for CANbus so as to ensure the communication quality. To set this, please:

- 1. Set first and last CANbus switch to "ON" position as be figure
- 2. Set units in between to "OFF"

Be Sure to Connect CANbus Cable

The CANbus cable between inverters is used to control and synchronize the inverter operations. You must connect them for proper operating.

Notes for Extending CANbus cable Length

If the cable is not long enough, please extend the cable length by similar wires. However, please limit the length up to 5 meters. And, all the lengths should be the same.

Ready to Start

Check List

Before starting the system, check following items:

Item	Point of check	Checked?
Mounting	 HBI[®] is firmly mounted on the bracket Bracket is firmly fixed 	
AC	 All wires are firmly fixed on terminals All polarities are correct Protective Ground is available and connected 	
PV	 All wires are firmly fixed on connectors Polarities are correct PV open voltage (VPV, OPEN) is less than maximum voltage of PV input Internal and/or external DC switch are on before operation 	
RS485	 Wires and cables are locked and fixed Polarities are correct For multiple units, be sure to set their RS485 in different addresses 	
DC (Battery)	 All cables are firmly secured Polarity is correct Breaker/Fuse is on Battery sensor is installed and connected 	
CANbus cables	 All cables are firmly secured Polarity is correct Check DIP switch 2 positions The wire lengths of different inverters should be the same 	

Operation

Display and Keys Display

- 1. Status LED: There are 2 LED's to indicate HBI[®] status. In normal condition, green one4 turns on; in abnormal or warning conditions, red one turns on
- 2. Text display: 2 lines, showing status, data and instructions

Display and Keys

Кеу	Function	Note
Ę	Exit to previous display	
个	Menu Up	
↓ ↓	Menu Down	
(Enter or Confirm a setting or selection	

Operation Chart

By pressing operation keys, different displays appear accordingly. Please refer to section of LCD Frames for detail information

⁴ In case green LED is flashing, there is internal comm. Error, please call your local service

Settings

You need to set inverters after first installation so as to have proper operation in the future.

After switching on PV and AC (recommend no battery at this moment) of the first installation, the initial setting frame comes out automatically. The chart is indicated.

Flow of Initial Settings

Initial Settings is a "one-way" flow. You can not go back to previous setting even you set wrong. In case incorrect operation during setting, please set it again later on.

System Connection

This setting is to set single or multiple inverter connection of the system. The selections are:

1. Single: only one inverter in this system

2. Parallel: The inverter AC mains are connected together; AC loads are connected together to build up a bigger systemSet Mode

The selections are:

- 1 Off-grid: for pure off grid operation
- 2 Net Metering: Grid interactive mode. Extra PV power feeds to grid.
 - 2.1 BAT -> Load: Off. Disable above function
 - 2.2 BAT -> Load: Night. This will enable load compensation from battery during night
- 3 Self Using
 - 3.1 BAT -> Load: Off. Disable above function
 - 3.2 BAT -> Load: Night. This will enable load compensation from battery during night only
 - 3.3 BAT -> Load: Day. This will enable load compensation from battery during day only
 - 3.4 BAT -> Load: Always. This will enable load compensation from battery during all the time

Disable Mains Charging Battery function

To enable load compensation from battery function, you need to disable the mains charging battery function in settings

Set Clock

To set clock, press up and down keys to increase or decrease on blinking characters; press Enter to change among day, month, year, hour and minute; press Enter to confirm settings.

Make sure clock is correct

Incorrect clock causes improper operations. Make sure HBI's clock is correct all the time.

Time of keeping clock setting after losing power In case switching off HBI for more than 5 days, the internal clock setting will lose and change back to the default settings.

Buzzer Configuration

The step is to set buzzer on/off. Press Enter to start setting. Press Up and Down to change setting. Press Enter again to confirm your selection.

Battery Configuration

This text shows the battery type and its string number. The available selections are:

- 1. Generic 1 & 2: They are general types of Lead-acid batteries. If you are using types other than official ones, please select one of this according to your battery parameters
- 2. YUASA NPA100-12I
- 3. CHLORIDE12CDC100
- 4. Panasonic LC-T12105x
- 5. No Battery

Except 1 & 2, all the other batteries are official ones. Each configuration has its own parameter. Please refer to Battery Charging/Discharging in Appendix for detail information. After setting the type, you have to set Ah (Ampere-Hour) of the battery bank equally divided by individual inverter number. For example, if you have a common 1000Ah battery bank for 5 inverters, the Ah of individual inverter should be 200Ah.

The possible selections are "100Ah~400Ah" and " \geq 500Ah".

Using Charging/Discharging Parameters

If you know parameters of non-official battery, please choose similar battery type of the list to have best performance.

Operation without battery

If battery is not connected, the output of inverter may not be stable, please not to connect critical load

Frequency Configuration

The setting is to set the AC output frequency to 50 or 60Hz.

Be careful to set the frequency

You can set the Frequency ONCE ONLY in initial setting. Please select proper one for your applications.

Frequency follows AC mains

In case AC mains are connected during setting, HBI will follow AC mains' frequency. In this case, frequency configuration frame will not appear during initial settings.

Mains Charging Battery

This item is to set whether inverter will use AC mains to charge battery or not. In some applications, you may need AC mains (Grid or Generator) to charge the battery bank when PV power is not enough and battery capacity is low. Select "Enable" so as to charge battery in this case; select "Disable" to skip this function.

Charging current while using Mains

Mains maximum current limits the charging current. Charging power equals mains power minus load power.

Caution for Multiple-unit Operations

It is very important to confirm above settings for each unit are the same. Mismatch settings could cause improper operations.

Set RS485 Address

The selectable address is from 1~200. Default address is 1.

To know the detail of addressing of RS 485, please refer to section of "Connecting RS485".

Check settings and restart the unit

After initial setting, please confirm again all the connections and settings, especially for battery, then switch off all sources, wait for 30 seconds and switch on all sources to restart the unit.

Normal Settings

Normal setting is used to set the unit whenever you would like to. Its process is similar to initial setting except operation flow as below.

In case you would like to set the unit, just use and to Setting Frame and press 3 times in 2 seconds to start.

SET MODE Selection

The "SET MODE" option appears only for HBI[®] models with dual "On-grid" and "Off-grid" operations.

Factory Setting

HBI[®] can be restored to factory setting. If you like to do this, please ask for your local service.

Manual ON/OFF

The manual ON/OFF switch is on the left side or front side as figure.

This switch is used to turn on/off <u>individual</u> inverter manually. There are some situations:

1 AC exists: turning off inverter switches load to AC mains

2 AC does not exist:

2.1

In case battery capacity is enough, push the button to start inverter ⁵. Inverter will supply power from battery bank to your loads 2.2

all the AC output will be off and inverter

will shutdown itself.

3 Multiple units: Turning off one inverter will switch off INDIVIDUAL inverter only

Operation

Display and Keys

Note:

- 1. In case no operation for 1 minute, LCD will go back to Home Frame automatically
- 2. Event Frame will not appear in case there is no error/event
- 3. To enter the setting Frame, you have to press **G** three times in 2 seconds

Home Frame

Home Frame shows the operation status and related data at first text line. It shows date and time at second line.

Local Load 1250W 03/DEC/14 09:35

Mode	Display in 1 st line	Description
Normal &	Local Load XXXXW	Indicating the power of XXXXW delivered to loads connected to the inverter.
Waiting	ConnGrid in XXXS	Indicating the remaining time for connecting Grid
Warning	Refer to warning	On warning or error happening, Inverter shows the warning messages

Error	Refer to error message	On error happening, HBI [®] shows the error messages
Manual Off	Manual Off, Push On/Off to turn on	Manual off. Load will continuously be supplied by AC mains if it exists.

Power Frame 1

From Solar 1700W To BAT 450W

Showing the instant power from different sources of individual inverter except mains power.

Display in 1 st line	Description
From Solar XXXXW	The power coming from PV under normal mode

Display in 2 nd	^l line	Description
Το ΒΑΤ	XXXXW	The power charged to battery
From BAT	XXXXW	The power comes from battery
To MAINS	XXXXW	The power fed to AC mains.
From MAINS XXXXW		The power get from AC mains.

Where To BAT (or From BAT) and To MAINS (or From MAINS) appear alternatively in this line

For multiple-unit connection, press 🖾 in this frame will show total grid and load power of the system. It is in the form of

TGrid	XXXXW
TLoad	XXXXW

Home Frame

Home Frame shows the operation status and related data at first text line. It shows date and time at second line.

Display		Description
LEtoday	XXXkWh	Local Energy consumption of the day
MEtoday	XXXkWh	Mains Energy supplied of the day in total. If " $$ -
		" appears in front of XXXkWh, it means feed -in
		energy is more than consuming.

Battery Frame

Showing battery status.

Display	Description

BAT	Charging	Battery status. "Charging", "Discharging", "Standby" or "Disconnected"
BAT Lev	vel Medium	Battery capacity level. "Full", "High", "Medium" and "Low"

Notice of Battery Power

Battery efficiency varies from many factors and is difficult to calculate. The power reading on HBI[®] display is a calculation for indication of system operation.

Setting Frame

By pressing 🖾 3 times in 2 seconds on setting frame, the setting procedure starts. Refer to Setting in previous section for detail information.

Display in 1 st line	Description
Error XX	Error number

Display in 2 nd line	Description
No Error	No error recorded
ERROR message	The error type, please refer to next section

Total Errors can be logged

The total errors can be recorded are 50. For error large than 50, latest one will replace earliest one.

If you like to view the error type, please tap ENTER and using UP and DOWN keys to see the detail. The format will be.

Line 1	Line 2	Description
Error XX	Error Message	Line 1 shows the error number, line 2 tells you the error message. The messages are listed in tables of error and warning in section Event Frame

Version Frame

The F/W version of inverter appears in this frame. In case service is required, please tell this information to your service agent.

Monitoring Frame

This frame displays inverter monitoring data of PV1 (DC), PV2 (DC), Mains (AC), Battery (DC), Mains frequency and internal temperature alternatively.

Role Frame

In multiple connections, this frame will appear. It indicates the inverter role of the multiple units. There are 2 roles: Master and Slave. There is only one master in a system. The others are all slaves. Master is assigned randomly in each start-up

Event Frame

105% Load Pls. Reduce Load

In the cases there are events such as errors, warnings and reminding, event frame will appear automatically. The prompt information is listed in error and warning tables below.

Line 1	Line ²	Buzzer	Meanings
AC VOLT HIGH	Vac XXX V	Silent	ACV is higher than upper limit
AC VOLT LOW	Vac XXX V	Silent	ACV is less than lower limit
AC FREQ HIGH	fac XX.X Hz	Silent	AC frequency is more than upper limit
AC FREQ LOW	fac XX.X Hz	Silent	AC frequency is less than lower limit
PV VOLT HIGH	Vpv XXX V	Cont.	PV is higher than upper limit
BAT VOLT HIGH	Vbat XX.X V	Cont.	Battery voltage is higher than upper limit
OVER LOAD	Output is off	Cont.	Output is overloaded more than defined time, output is cutoff
O/P Short CKT	REMOVE CKT	Cont.	Output is short
No Battery	Check BAT Conn.	Cont.	Battery is not

Error message

			connected
PV- E Low Insul.	Check PV Wiring	Cont.	Insulation resistance between PV and Earth is too low
СХ	No Display		C1~C7 errors, reserved for internal diagnose
EX	No Display	Cont.	E6~E12 errors, indicating errors for multiple connection

Warning message

Line 1	Line 2	Buzzer	Description
1XX · Load	Pls. Reduce Load	On 0.5 Off 0.5	The load is more than 103%, inform user to reduce load
Low Bat. Cap.	Will Shutdown	On 0.5 Off 4.5	Battery capacity is low. HBI [®] will shutdown
Fan Fails	Check or Replace	On 0.5 Off 4.5	External fan does not work properly

Monitoring HBI[®]

To do this, you need to have RS485 connection and related software. Please refer to Connecting RS485 for proper connection and setting; please refer to separate software manual for installation and application.

If you need send monitoring data to Internet, please use EssLog[®] gateway. Please contact with your local dealer for further information.

Using USB Download Data to USB stick

You can plug in a pre-formatted USB stick into USB port to download the operation data. The stick must be FAT or FAT32 formatted.

To do this, plug in a USB stick. LCD will show "Download Data Processing".

After plugging in the USB, all data inside the HBI[®] will be downloaded to the stick automatically. LCD will show corresponding status.

After downloading, while LCD shows "Download Data Finished", you can then pull off the USB disk.

Data Format

Incorrect clock causes improper operations. Make sure HBI's clock is correct all the time.

USB Disk Contains Firmware

In case switching off HBI for more than 5 days, the internal clock setting will lose and change back to the default settings.

Set Clock

You can upgrade HBI[®] by USB disk with official firmware. To do this, you need to have the firmware in a USB stick. To update by USB, please get the latest firmware, put it into a blank USB disk, plug the USB disk to HBI[®], it will start the upgrade automatically. Contact your local dealer for more information.

PV or Mains must be available

To prevent unexpected stop, before starting upgrade, make sure PV or mains are available

Capacity of Memory

The internal memory can store up to 12 months length of data. Data older than this period will be replaced by latest data automatically.

Backup Data Periodically

Once data in the logger has been deleted, it cannot be recovered. Therefore it's recommended to backup the data periodically if you wish to retain this information.

Trouble Shooting

In case HBI[®] detects any problem, it will behave as the situations in table below. Please follow the instruction to solve the problem. If the problem continues, please contact your local service for further assistance.

General Fault

Trouble	Treatment
No display or incorrect display	 Make sure all PV and battery are properly connected Check Battery fuse and switch (breaker) is on Check AC (mains). If no AC, try to push "Manual On/Off" button If above actions are useless, please DO NOT push manual on/off any more, call your service immediately
No PV or very small PV power	Please check 1. PV polarities 2. PV wiring and connections ⁶
Error on display	 Refer to error table in Error Frame section 1. Errors on list : Read related meaning and take suitable action 2. "C#" Error : Switch off all AC and DC. Then switch on the DC and then the AC again 3. If above error continues, please contact with local service and tell he the error on LCD
C4 appears	 Error code C4 stands for internal over-temperature. 1. Review installation location, cooler ambient is preferred 2. Clean up dust on fans and ventilation holes 3. If C4 continues, please contact with your local service
E3 (or PV -E LOW INSUL.) appears	This error code stands for insulation problems between Line (or Neutral) and earth GND

⁶ In most cases, they are caused by contacts of the wiring and plugs contact. A way to confirm this is to short the PV string, measure its current.

During day time, the short-circuit current should be higher than 1A.

	1. Make sure GND is correctly connected at
	mains input
	2. Check system GND connection 3. Check whether there is obstacle such as bug
	between Line (or Neutral) and GND
	4 Check the insulation of wires to GND
	5. Check the insulation between $PV+$ (or $PV-$)
	and GND
	If you find this in initial installation, please check
X4 appears	1. AC mains and Load connection
	2. AC load is to be connected to load, NOT AC main
	 Improper battery type. Please use official batteries
Unable to charge batteries	The life cycle of battery ends. Please replace batteries
	3. Improper battery connection. Please check
	the wirings between HBI [®] and battery bank
RS485 does not	1. Check all wirings, connections and polarity
work	 Try to switch "on" or "off" terminal DIP switch
"BAT -> Load" does	1. Enable this function in setting menu
not work	 Make sure "Mains charges Battery" function is off
Internal Comm.	1. Green status LED is flashing
Error	2. Call your local service
	Caused by unstable grid satiation, please
Frequent	1. Improve the AC cables to larger and/or
disconnection in	shorter
on-grid operation	2. Check the AC voltage and frequency
	Ask local service for adjusting operation
	parameter
	1. Please reduce the load
	2. Please check the load PF (Power Factor). For
Overload	some loads (such as lighting) with less PF, it
	may take higher current; even its wattage is
	small. In this case, please correct or replace

	1.	Current could normally deviate about 10% for different inverters
Current unbalance in multiple -unit operations	2. 3.	Check AC input and output cables of different inverters, every input (output as well) cable should be same length Check CANbus cable lengths, the y should be the same

Multi-unit Fault

E6	 FW versions are not same among inverters Check the FW version of every inverter. If different, please as FW for update
E7	 Mode settings for multiple -unit operation are not consistent. 1. Please check individual mode setting 2. Correct if necessary
E8	 Frequency of faulty unit cannot be synchronized with other units. 1. Make sure AC loads of all inverter in the same phase are connected and short 2. Make sure AC phases are same for all inverters
E10	 Faulty unit cannot receive Master's signal. 1. Make sure CAN cables are correctly connected 2. Restart the units
E11	 Operation status of faulty unit cannot be synchronized with other units. 1. Adding new unit in a running multiple inverters could raise this error 2. Make sure AC loads of all inverter in the same phase are connected and short 3. Make sure all units are in parallel modes 4. Make sure CAN cables are correctly connected 5. Restart the units
E12	Over current is detected at mains input. 1. Check loads, reduce them if necessary

2. 3.	Check AC mains connections of all units Restart the units

Caution of Adjusting Operation Parameters

This may violate local grid-tie regulation. Please ask your qualified technical support to do this ONLY!

Maintenance

Regular maintenance

For best results, please follow below points:

- 1. Keep proper distance from other obstacles. Make sure air-flow and heat dissipation path is cleared
- 2. Clean up any dust on this unit, especially on the ventilation holes
- 3. Check operation and status if possible
- 4. Check all wiring and cables

Cleaning Dust

Use a brush the clean the dust on ventilation holes on both sides

Replacing AC Fuse

For some abnormal situations such as over load on AC out, the AC fuse may be broken. If this happens, you need to replace the fuse (30A/250VAC, fast- acting).

There is a spare fuse in accessory. Take that fuse, follow figure on right side and replace it.

Maintenance

Regular maintenance

Model Item	Unit	HBI-3000-E-xx*	HBI-5000-E-xx*			
Input (Mains, AC)						
Nominal Voltage	V	230				
Voltage Range	V	190 ~	300			
Nominal Frequency	Hz	50/6	50			
Power Factor		0.9	9			
Maximum Current	А	15	25			
Inrush Current	A/μS	100/2	200			
Max. Power	VA	3000	5000			
Input (PV, DC)						
Maximum Power	W	3000	5000			
Maximum Voltage	V	500	500			
MPPT Range ²	V	100~450	100~450			
Start-up Voltage	V	150	150			
Maximum Current	A	10	20			
Absolute Max. Current (Isc)	А	15	30			
MPP tracker No.		1	1			
Max. Backfeed Current	mA	1.6	1.6			
Battery I/O (DC)						
Nominal Voltage	V	48	3			
Voltage Range	V	40 ~	59			
Nominal Current	А	54	93			
Maximum Current	A	65	100			
Max. Charge Current ³	А	40	60			
Max. Leakage	mA	1				
Output (Load, AC)						
Nom. Power	VA	3000	5000			

Note: *stanealone-SA.

Model Item	Unit	HBI-3000-E-xx*	HBI-5000-E-xx*		
Max. Power	W	2400	4000		
Inrush Current	A/μS	100/200	100/200		
Max. Fault Current	А	50	79		
Max. Protection Over-current	А	50	79		
Nominal Voltage	V	120, 1	230		
Nom. Frequency	Hz	50/6	50		
THDV	%	5			
Voltage Regulation	%	2			
DC injection	mV	±10	0		
Overload Capacity		600 seconds for 100% ≤ load ≤ 110% 30 seconds for 110% < load ≤ 150% 10 seconds for 150% < load ≤ 200%			
General					
Temp. Range ⁴	°C	-20 ~ 55			
Max. Eff. (PV/AC)	%	95	96		
Max. Eff. (BAT/AC)	%	92	92		
Protection		IP20			
Humidity	%	0~95, non condensing			
Cooling		Forced Air Variable fan sp	-cooling beed control		
Protection Class		I			
Environment Cat.		Pollution D	egree III		
Overvoltage Cat.		DC input: II, A	C input: III		
Amplitude	m	<200	00		
Transfer Time 5	mS	<4			
Reconnect Time ⁶	S	300			
Features					
LCD		2-line 16 char	acters text		
Interface		USB, RS485 & CANbus for multiple -unit operations			
RS485		2 wires, half -duplex			
Date Logging		Ye	S		

Note: *stanealone-SA.

Model Item	Unit	HBI-3000-E-xx*	HBI-5000-E-xx*	
Parallel Operation		No	Yes	
Max. Units for Parallel Operation		NA 6		
Mechanical				
W x H x D	mm	425 x 388	3 x 120	
Weight	kg	12	14	
DC switch		No		
Compliance				
Grid Monitoring		VDE0126 -1-1/A1 IEEE 519 CEA (2013), IEC 61727, IEC 62116		
Safety		IEC 62109 -1	L, 62109 -2	
		EN6100	0 -6-4,	
EMC Emission		EN61000 -3-2, EN61000 -3-3	EN61000 -3-11, EN61000 -3-12	
EMC Immunity		EN61000 -6-2		
Battery				
Capacity		100Ah/12V x 4 per bank		
Official Type		Refer to table below		

Note:

- 1. Specifications are subject to change without prior notice
- 2. The input power may be reduced for voltage lower than 250V
- 3. Charge current will adjusted according to battery configuration
- 4. Output power may be reduced for temperature > 40°C
- 5. AC to backup, single unit mode
- 6. Only for on-grid mode

*stanealone-SA.

Battery Charging/Discharging

Charging Method

This inverter apply 3-step charging algorithm as below figure.

- 1. Bulk stage: Constant current charging
- 2. Absorption stage: Constant voltage charging
- 3. Float stage: Constant voltage charging with lower voltage

Charging/Discharging Parameters

Туре	Ah	Buck Charging Current	Absorption Voltage	Float Voltage	Cut-off Voltage
	100	20	14.1	13.6	11.0
H	200	40	14.1	13.6	11.0
eric	300	60	14.1	13.6	11.3
ene	400	60	14.1	13.6	11.3
Ű	≥500	60	14.1	13.6	11.3
	100	20	14.4	13.6	10.5
c 2	200	40	14.4	13.6	10.5
ieri	300	60	14.4	13.6	10.8
Gen	400	60	14.4	13.6	10.8
Ŭ	≥500	60	14.4	13.6	10.8
5	100	20	14.5	13.6	11.3
- 12	200	40	14.5	13.6	11.3
o0.	300	60	14.5	13.6	11.6
۲۱ PA1	400	60	14.5	13.6	11.6
ž	≥500	60	14.5	13.6	11.6
Chl	100	20	14.7	13.6	10.2

	200	40	14.7	13.6	10.2
	300	60	14.7	13.6	10.5
	400	60	14.7	13.6	10.5
	≥500	60	14.7	13.6	10.5
	100	30	14.5	13.6	10.2
nic 015	200	60	14.5	13.6	10.2
aso 12(300	60	14.5	13.6	10.5
an: C-T	400	60	14.5	13.6	10.5
<u></u> н с	≥500	60	14.5	13.6	10.5

Note:

- 1. The voltage indicated is for single 12V battery
- 2. Cut-off voltage is the stop voltage of rated discharging power. E.g. for one string, it is the voltage of 115A discharging