9001 \$\frac{1}{2} \times \frac{1}{2} \frac{ ## **Photovoltaic Engineering** Experimental Module System ### ヨハハヨ Photovoltaic engineering becomes increasingly popular as an environmentally friendly alternative to the conventional generation of electricity even in industrial countries. In 1997 this field experienced an annual growth of approx. 30 % compared with approx. 20 % in the previous years. The largest share on the world market however is covered by the countries that are rich of sun and in which one to two thousand million people of the worldwide population still do not have any access to commercial power supply. Here, the field of photovoltaic engineering offers separate systems with storage batteries, which supply sufficient power to operate e.g. a few lamps, telecommunications equipment (radios, television sets etc.) and small refrigerators. In order to be able to install and maintain photovoltaic systems competently, certain technical skills are required. ELWE have developed the experimental module system "Photovoltaic Engineering, Stand-by Supply" to help obtain these skills in a very plain and almost autonomous way. The experimental module system has essential advantages compared with steady-state systems with external solar modules: - · The whole concept of a photovoltaic system including its structure and influences of action can be learnt entirely. - The experiments can be carried out at any time and independently of the position of the sun which means that the sessions can be planned exactly. - The intensity and the angle of incidence of the sunlight can be reproduced within a short space of time at any time. - The system can be set up step by step which means that the functions of individual components can also be examined. - · Several working stations can be set up at much lower costs guaranteeing action-oriented learning. - The basic equipment allows you to set up a complete photovoltaic system in isolated operation with low voltage. A spotlight with a 500-W halogen dimmer lamp is used instead of the sunlight. - The power inverter is an essential part of the supplementary equipment because it allows you to operate 230-V equipment by means of the photovoltaic system, too. It is possible to examine the structure and circuit engineering of a stand-by supply system for a photovoltaic system simply by extending the set-up with emergency lighting. #### Experimental Manual "Photovoltaic Engineering and Stand-by Supply" 52 04 501 0 part of the basic equipment 02 04 500 The experimental manual covers the following subjects: #### Determining the Electrical Characteristics of a Solar Module - Measurement of the open-circuit voltage U_L and the short-circuit current I_K of the cold solar module at full illumination - · Measurement of the open-circuit voltage and the short-circuit current at different values of illuminance - · Measurement of the open-circuit voltage and the short-circuit current at different angles of incidence - Open-circuit voltage and short-circuit current as a function of temperature - Measurement of voltage and current at constant illuminance and variable load - · Influence of partial shading on the power output of the module - · Working point when a consumer is directly connected to the solar module #### Components of a Separate Photovoltaic System - · Connection of the solar module to a solar 12-V accumulator battery - · Overvoltage protection - · Charge controller - · Exhaustive discharge protection - · Reverse voltage protection #### **Electrical Safety of a Photovoltaic System** - · Short-circuit protection for solar modules - · Short-circuit protection for accumulator batteries - Studies on the selectivity of the applied overcurrent protective devices #### Inverters - · Areas of application and methods of operation of inverters - · Measuring the input current and the output voltage of an inverter - · Oscillograms of output voltage and input current #### Solar Stand-by Supply Systems - · Stand-by supply and emergency lighting - · Technical supply conditions of a stand-by supply system - · Current flowchart of the stand-by supply system for the emergency lighting - · Set-up and testing of the solar stand-by supply system #### Basic "Photovoltaic Engineering" 02 04 500 #### The basic equipment includes: | 1 | BS 4.500 | Terminal unit | | |---|---|---|--| | | | for the solar module, 12 V 22 04 500 | | | 1 | BS 4.501 | Overvoltage protection 22 04 501 | | | 1 | BS 4.502 | Charge controller | | | 1 | BS 4.503 | Distribution board with fuse 10 A 22 04 503 | | | 1 | BS 4.504 | Exhaustive discharge protection 22 04 504 | | | 1 | BS 4.505 | Fuse 6 A | | | 1 | BS 4.513 | Rheostat 10 Ω, 4 W | | | 1 | BS 4.514 | Rheostat 470 Ω, 20 W 22 04 514 | | | 1 | BS 4.516 | Accumulator battery 12 V, 6,5 Ah 22 04 516 | | | 1 | BS 4.517 | Lamp socket, E 27, | | | | | for 12 V/10 W lampe 22 04 517 | | | 1 | BS 4.519 | Schottky diode, 45 V, 3 A 22 04 519 | | | 1 | Solar module 12 V, 12 W | | | | 1 | Spotlight with halogen lamp 230 V, 500 W 23 04 002 | | | | 1 | Energy-saving lamp 12 V, 10 W, E27 59 50 882 | | | | 1 | Connection cable 20 cm, 4 mm ² 55 00 820 | | | | 1 | Experimental manual on CD 52 04 501 0 | | | | | | | | #### Additionally required: | 2 | 2 Multimeters, | |---|---| | | e.g. multimeter MA 1H | | 1 | Set of safety cables for 02 04 500 57 04 500 | | 1 | Mounting wall, type 120, 1200 mm wide 73 01 112 | | | alternatively: type 150, 1500 mm wide 73 01 115 | | | alternatively: type 180, 1800 mm wide 73 01 118 | #### Supplementary Equipment "Inverter, Stand-by Supply" 02 04 510 Experimental set-up on the subject "Solar stand-by supply" #### The supplementary equipment includes: | 2 | BS 4.506 | Relays, | |---|-------------|--| | | | 3 make contacts, 1 break contact 22 04 506 | | 1 | BS 4.507 | Open-phase relay | | 1 | BS 4.508 | Starter relay, 1 make contact 22 04 508 | | 1 | BS 4.509 | Emergency lighting, maintained 22 04 509 | | 1 | BS 4.510 | Emergency lighting, stand-by circuit . 22 04 510 | | 1 | BS 4.512 | Lamp socket, E 27, | | | | for 230 V/25 W lamp 22 04 512 | | 1 | BS 4.515 | Inverter | | | | 12 V DC / 230 V AC, 150 VA 22 04 515 | | 1 | BS 4.518 | Terminal unit | | | | for mains connection 230 V 22 04 518 | | 1 | Filament la | amp E 27, 230 V, 25 W 59 50 825 | | 1 | Filament la | amp E 14, 230 V, 25 W 59 50 725 | #### Additionally required: | 1 | Oscilloscope, | |---|--| | | e.g. 35-MHz dual-trace oscilloscope HM 303 25 00 302 | | 1 | Set of accessories for the HM 303/305 25 00 312 | | 1 | Mounting wall, type 150, 1500 mm wide 73 01 115 | | | alternatively: type 180, 1800 mm wide 73 01 118 | | | | | | | | | | | | | | | | | | |